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Abstract

Cartesian meshes for domains with complicated boundaries give rise to cut cells with arbitrarily small volumes.

Explicit integration schemes over such meshes have a time step restriction proportional to the smallest cell volume.

We present an implementation of the kinetic scheme for gas dynamics by Perthame [B. Perthame, Boltzmann type

schemes for gas dynamics and the entropy property. SIAM J. Num. Anal. 27 (1990) 1405–1421] on arbitrary Cartesian

meshes. The formulation allows a time step based on the underlying regular cell size, and retains L1-stability, positivity

and second order convergence. Numerical convergence studies on arbitrary grids are presented.
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1. Introduction

Computations of practical engineering problems often involve domains with complicated boundaries.

Examples include external flow around aircraft, or internal flow inside engines. Grid generation around

such geometries forms an important component in a successful computation, presenting practical chal-

lenges in the scientific computing process. Body-fitted coordinates are often very difficult to generate, while
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Fig. 1. A Cartesian mesh grid has regular, irregular and covered cells.
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unstructured triangular meshes do not lend themselves easily to to adaptive mesh refinement. Cartesian

grids are relatively easy to generate in any number of space dimensions, and lend themselves to grid adap-

tion [1]. However, such grids lose their regular structure near domain boundaries where cut cells of odd
shapes and arbitrary size may arise (See Fig. 1.) Explicit, time accurate schemes for integrating the gas

dynamics equations have a CFL time step restriction proportional to the size of the smallest cell. Since

irregular cut cells may be arbitrarily small, such a restriction is impractical and is often referred to as

the �small cell problem�. Scheme modifications to overcome the small cell problem include cell merging,

and flux redistribution. In cell merging [2], the small cell is merged with a nearby regular cell, thereby ensur-

ing a lower bound on cell size and alleviating the time step restriction. Flux redistribution schemes [3,4] first

create a preliminary solution update ignoring the presence of the boundary, then hybridize it with the solu-

tion update of the small cell to form a stable update. The conservation error is distributed among the small
cell�s neighbors, keeping the scheme as a whole conservative. The use of capacity functions in the case of

advection [5] and long time step methods [6] also can serve to stabilize small cells. A more recent approach

is the h-box method, which devises a numerical flux for the small cells using a domain of dependence of

regular grid spacing h; see [7] and papers it cites. With all such techniques there is the concern that the

boundary treatment remains as accurate as the interior scheme: see [8].

In this paper, we formulate the kinetic scheme for gas dynamics proposed by Perthame in [9] on arbitrary

grids. The formulation overcomes the small cell problem by accounting for particles transported through

more than one cell face. The scheme retains its regular grid robustness, is L1-stable and positive, and re-
quires no additional averaging near the domain boundaries. A similar approach to this problem, computing

conservative transport directly between grid cells, is taken in [10].

The paper is organized as follows: Section 2 introduces the governing equations and notation, and dis-

cusses the general numerical framework along with the basic scheme properties. Section 3 describes an

implementation of the scheme on arbitrary grid, and Section 4 presents extensive numerical examples for

one dimensional flows. Section 5 sketches the 2D form of the scheme, and Section 6 gives numerical exam-

ples for 2D flows.
2. Preliminaries

2.1. Macroscopic gas dynamics

The Euler equations of gas dynamics in one space dimension are
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where q, u and p denote the density, bulk velocity, and pressure. The total energy is E ¼ qeþ 1
2
qu2, with e

the specific internal energy. The system is closed by an equation of state; for polytropic gases it is
p ¼ ðc� 1Þqe; ð2Þ

for c the specific heat ratio of the gas. The equations (1) form a set of non-linear hyperbolic conservation

laws
Ut þ FðUÞx ¼ 0 ð3Þ

with U = (q, qu, E)T the vector of conserved variables and F(U) = (qu, qu2 + p, u(E + p))T the vector of flux

functions.

2.2. Finite volume numerical approximation

We partition the computational domain into cells Ii ¼ ½xi�1
2
; xiþ1

2
�, of length Dxi and define a set of dis-

crete times {tn}. Integrating (3) over the box Ii � ½tn; tnþ1� gives
Unþ1
i ¼ Un

i �
Dt
Dxi

Fn
iþ1

2
� Fn

i�1
2

� �
; ð4Þ
where
Un
i ¼

1

Dxi

Z
Ii

Uðx; tnÞdx; Fn
iþ1

2
¼ 1

Dt

Z tnþ1

tn
FðUðxiþ1

2
; tÞÞdt ð5Þ
are, respectively, the cell average of U over Ii at time tn, and the time average of F(U) at xiþ1
2
over the time

interval [tn,tn + 1]. Finite volume schemes are obtained by approximating the time-average flux Fn
iþ1

2
at cell

interfaces. In kinetic schemes, the Boltzmann equation (6) is used to determine the flux, as described below.

We have adopted the kinetic scheme derived by Perthame [9] for computations on arbitrary grids; for com-

pleteness it is described in Section 2.3.

2.3. The kinetic framework

The evolution of non-equilibrium gas dynamics is governed by the Boltzmann equation:
ft þ v � rxf ¼ Qðf ; f Þ: ð6Þ

The function f(t, x; v) is the particle distribution function in v, the particle velocity. The collision oper-

ator Q(f, f) governs relaxation processes toward thermal equilibrium, for which f takes the form of a Max-

wellian distribution. Macroscopic descriptions of gas dynamics such as (1) may be obtained by taking

moments in v of (6) and the appropriate fluid limit [11].

For its equilibrium distribution, the kinetic scheme proposed by Perthame [9] uses a simplified pseudo-

Maxwellian that retains some properties of the Maxwellian with respect to its moments. Define
vðwÞ ¼ ð2
ffiffiffi
3
p
Þ�1I½� ffiffi3p ;

ffiffi
3
p
�ðwÞ; ð7Þ
where ISðxÞ is the characteristic function of S. The moments
mk ¼
Z
R

wkvðwÞdw ð8Þ
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satisfy
m0 ¼ m2 ¼ 1; m2iþ1 ¼ 0; i P 0:
The particle �equilibrium� distribution is defined in terms of f(v) and g(v):
f ðvÞ ¼ qffiffiffiffi
T
p v w vð Þð Þ; gðvÞ ¼ k

ffiffiffiffi
T
p

v w vð Þð Þ; ð9Þ
where T = p/q is the temperature, k = (c � 1)�1�1/2, and
w ¼ v� uffiffiffiffi
T
p ð10Þ
is a rescaled, non-dimensional particle velocity relative to the gas macroscopic velocity u. The pseudo-Max-

wellian (7) has compact support which implies a maximum particle speed, so for a given time step the do-

main of influence of each grid cell is known. A direct calculation confirms that
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0B@
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Within the kinetic framework, given piecewise constant initial data Un
i , the �pseudo-equilibrium� particle

distributions f0(x; v) and g0(x; v) are constructed in each cell, according to (9). The idea is to solve the col-

lisionless transport equations:
ft þ v � rxf ¼ 0; f ðx; 0; vÞ ¼ f0ðx; vÞ;
gt þ v � rxg ¼ 0; gðx; 0; vÞ ¼ g0ðx; vÞ:

ð13Þ
These are linear transport equations and can be solved exactly:
f ðx;Dt; vÞ ¼ f0ðx� vDt; vÞ;
gðx;Dt; vÞ ¼ g0ðx� vDt; vÞ:

ð14Þ
Macroscopic fluid data at the new time level is recovered by taking moments in v of the distribution func-
tions using (11) and averaging over each cell. Once the fluid variables at t = Dt have been obtained, instan-

taneous relaxation to thermal equilibrium is assumed by reconstructing the particle distribution function as

an �equilibrium� distribution around the newly computed macroscopic state.

2.4. Scheme properties

The time marching scheme (9), (13), (14) is inherently conservative. It is L1-stable and entropy satisfying

provided f0 and g0 are non-negative [12]; it is time accurate to first order, pointwise (and thus for cell aver-
ages), and it preserves positivity of density and internal energy. More details can be found in [9].

Second order time accuracy may be obtained by modifying the initial distributions f(x; v) and g(x; v) to

take the form
fsðx; vÞ ¼ f0ðx; vÞ 1� aðxÞðw2 � 1Þ
� �

; ð15Þ
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gsðx; vÞ ¼ g0ðx; vÞ 1� 2

5k
aðxÞ þ k�1bðxÞw

� �
: ð16Þ
A direct calculation establishes that with the choice
aðxÞ ¼ 5Dt
8
ð3� cÞoxu0ðxÞ; ð17Þ

bðxÞ ¼ Dt �6=5� c
c� 1

� �
ox

ffiffiffiffiffiffiffiffiffiffiffi
T 0ðxÞ

p
� 3

10

ffiffiffiffiffiffiffiffiffiffiffi
T 0ðxÞ

p oxq0ðxÞ
q0ðxÞ

� 	
; ð18Þ
U may be recovered from fs and gs just as in (11), and that the Taylor expansion in time of the kinetic solu-

tion matches that of the exact solution including terms of O(Dt2). To ensure positivity of fs and gs, a and b

need to be limited. For gas dynamics, 1 < c 6 5/3, resulting in the restriction
jaj 6 1=2; jbj 6 ðk� 1=5Þ=
ffiffiffi
3
p

: ð19Þ

Second order spatial accuracy is obtained through a piecewise linear reconstruction using the primitive

variables V ¼ ðq; u; r �
ffiffiffiffi
T
p
Þ

ViðxÞ ¼ ðqiðxÞ; uiðxÞ; riðxÞÞ
T ¼ ðqi; ui; riÞ þ ðDqi;Dui;DriÞðx� xiÞ: ð20Þ
To ensure the reconstruction is conservative, we set
qi ¼ qn
i ; ð21Þ

ui ¼ ðquÞni �
DqiDui
12

Dx2i

� �
=qn

i ð22Þ
and ri the positive root of
qn
i

c� 1
r2 þ Dx2i

6

DqiDri
ðc� 1Þ r þ

qn
i u2i
2
þ Dx2i

12

qn
iDr

2
i

ðc� 1Þ þ
qn
iDu

2
i

2
þ uiDuiDqi

� �
¼ En

i : ð23Þ
To ensure positivity of ri(x) we limit
jDuij 6
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc� 1ÞT i

p
Dxi

; ð24Þ

jDrij 6
ffiffiffiffiffi
T i
pffiffiffi
3
p

Dxi
; ð25Þ
where Ti is calculated from the cell averaged state Un
i .
3. Numerical implementation

In [9], the scheme is given in finite volume form with Fiþ1
2
¼ Fþiþ1

2

þ F�iþ1
2
, where
Fþiþ1
2

¼ 1

Dt

Z Dt

0

Z
v>0

v

v2

v3

2

0B@
1CAfiðxiþ1

2
; t; vÞ þ

0

0

v

0B@
1CAgiðxiþ1

2
; t; vÞdvdt; ð26Þ
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Here
fiðx; vÞ ¼ fsðx; vÞIIiðxÞ; giðx; vÞ ¼ gsðx; vÞIIiðxÞ ð28Þ

are the distributions in cell Ii. The flux at xiþ1

2
is composed of contributions from its neighbors to the imme-

diate left and right; see Fig. 2. If particles are allowed to cross at most one cell interface during a time step,

the CFL restriction for (13), based on the maximum particle speed in (7), limits the timestep to
Dt 6
miniDxi

max
i
ðjuij þ

ffiffiffiffiffiffiffi
3T i

p
Þ
: ð29Þ
In the case of embedded boundaries, the smallest cell size mini Dxi may be arbitrarily small, leading to a

prohibitively small time step Dt. A larger time step may be taken, during which particles may travel across

multiple cell faces. The flux formulation (26) is not easy to generalize for particles that travel across multiple

faces in a single time step. Instead, we calculate the transport of particles directly between nearby cells that

do not necessarily share a common face. We set the desired domain of dependence of the transport inde-

pendently of the smallest cell size of the grid; see Fig. 3.
We will set Dt similarly to (29):
Dt 6
Dx

maxifjuij þ
ffiffiffiffiffiffiffi
3T i

p
g
: ð30Þ
The difference is that the parameter Dx is chosen independent of the smallest cell size. For cut-cell grids,
the regular grid spacing Dx is used.

3.1. Basic transport problem

The conserved quantities in cell Ii at time Dt,
UiðDtÞ ¼
Z
x2Ii

Z
v2R

1

v
v2

2

0B@
1CAf ðx; v;DtÞ þ

0

0

1

0B@
1CAgðx; v;DtÞdvdx ð31Þ
can be calculated using the exact solution to the transport equation (13):
i

0

t 0 t∆+

xi+1/2xi–1/2 xi+3/2

Fi+3/2

fi+1 gi+1,

Fi+1/2 Fi+1/2
+Fi1/ 2 +

Fi+3/2

Fi+1/2Fi1/ 2

fi g i,

i i+1i–1

∆x

t

Fig. 2. Flux formulation.
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UiðDtÞ ¼
X
j

Z
x2Ii

Z
v2R

1

v
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2

0B@
1CAfjðx� vDt; vÞ þ

0

0

1

0B@
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The size of Dx and the corresponding choice of Dt set the domain of dependence of the transport, so we

sum over those cells Ij within Dx of Ii.

It is sufficient to describe the transport of particles that originate in a (source) grid cell
S ¼ Ij ¼ ½� Dxj

2
;
Dxj
2
� and end in another (target) grid cell T ¼ Ii at time Dt:
Z
x2S

Z
xþvDt2T

1

v
v2

2

0B@
1CAfjðx; vÞ þ

0

0

1

0B@
1CAgjðx; vÞdvdx: ð33Þ
The support in v of fj and gj is determined by v(w). Recalling the definition of v(w) (7) and w (10) we set
vðwðvÞÞ ¼ ð2
ffiffiffi
3
p
Þ�1I½q�ðxÞ;qþðxÞ�ðvÞ; ð34Þ
where
q�ðxÞ ¼ uj �
ffiffiffi
3
p

rj þ ðDuj �
ffiffiffi
3
p

DrjÞx; ð35Þ

are the maximal and minimal particle velocities in the source cell j.

Then, using (15), (16) and (34) we may rewrite (33) as
ð2
ffiffiffi
3
p
Þ�1
Z
x2S

Z
xþvDt2T

v2½q�ðxÞ; qþðxÞ�

1

v
v2

2

0B@
1CAIþ

0

0

1

0B@
1CAIIdvdx: ð36Þ
where
I ¼
qj þ Dqjx

rj þ Drjx
1þ ajðwðx; vÞ2 � 1Þ
� �

ð37Þ

II ¼ ðqj þ DqjxÞðrj þ DrjxÞ k� 2aj
5
þ bjðxÞwðx; vÞ

� �
ð38Þ
are the contributions due to fj(x; v) and gj(x; v), respectively.

3.2. The integral

For second order accuracy, we approximate the integrand of (36) by a Taylor expansion in x, dropping
terms of order O(x2) and higher. Then,
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I ¼ q
r
ð1þ Dq

q
x� Dr

r
xÞ þ a ðv� uÞ2r�2 � 1

� �� �
þOðDx2Þ; ð39Þ
and
II ¼ Aðqr þ qDrxþ rDqxÞ þ ðqB1 þ rB2Þðv� uÞ þOðDx2Þ; ð40Þ

where
A ¼ k� 2a=5;

B1 ¼ Dt �6=5þ c
c� 1

� �
Dr;

B2 ¼ �
3

10
DtDq:

ð41Þ
To compute (36) we need to evaluate integrals of the form
Z
x2S

Z
xþvDt2T
v2½q� ;qþ�

xivj dvdx: ð42Þ
for 0 6 j 6 4 if i = 0, and for 0 6 j 6 2 if i = 1.

We view the integral as
Z Z
ðx;vÞ2P

xivj dA; ð43Þ
where P is the convex polygon in (x,v) defined by the conditions fx 2S; v 2 ½q�ðxÞ; qþðxÞ�; xþ vDt 2T; g;
see Fig. 4. Using the divergence theorem we get
Z Z
ðx;vÞ2P

xivj dA ¼
Z
oP

ð0; x
ivjþ1

jþ 1
Þ � n̂dS ¼

Xn�1

k¼0

Z 1

0

xk þ Dtdxkð Þi vk þ Dtdvkð Þjþ1�dxk
jþ 1

dt;

dxk ¼ xðkþ1Þmodn � xk; dvk ¼ vðkþ1Þmodn � vk:

ð44Þ
3.3. A single time step

Given cell averages Un
i , we summarize the steps required to obtain Unþ1

i .

(1) Compute (preliminary) primitive variables Vi in cells Ii.

(2) Compute (preliminary) slopes DVi (e.g., using non-oscillatory interpolation).

(3) Compute Dt using (30).

(4) Limit slopes to ensure positivity of f and g using (24), (25)

(5) Adjust for conservation using (22) and (23) to get (final) primitive reconstruction Vi,DVi.

(6) Construct f(x, v) and g(x, v) using (15), (16).
(7) Initialize a vector of updates dUi to zero. For each cell Ii,

(a) Identify Ji, the set of indices of cells with any part within Dx of cell Ii, excluding i itself.

(b) For each j2Ji
(i) Compute dUi!j ¼

R
x2Ii

R
xþvt2Ij

1

v
v2

2

0@ 1Afsðx; vÞ þ
0

0

1

0@ 1Agsðx; vÞdvdx:
(ii) Update dUj dUj + dUi!j.
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(iii) Update dUi dUi � dUi!j.
(8) Update Ui Ui + dUi/Dxi.

3.4. Boundary procedures

For one dimensional flow, reflecting boundary conditions are typically implemented by setting �mirror

image� ghost flow on the opposite side of the boundary face with identical pressure and density and oppo-

site flow velocity normal to the boundary. This procedure can be equivalently formulated at the particle

level by setting mirror image distribution functions
f̂ 0ðx; vÞ ¼
f0ðx; vÞ x > 0

f0ð�x;�vÞ x < 0



; ð45Þ
similarly for g0(x; v).
4. Numerical examples

In the following examples, the solution domain is x 2 [0,1]. The grid cell boundaries are at xi � 1
2
,

1 6 i 6 N + 1 with x1
2
¼ 0; xN þ 1

2
¼ 1. The characteristic grid spacing is Dx = maxiDxi. In all computations,

Dt is computed according to (30), and c = 1.4.

The piecewise linear reconstruction of the primitive variables uses a minmod limiter
DV i ¼ minmodðD0V i; 2D�V i; 2DþV iÞ=Dxi; ð46Þ
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where D±Vi are the forward/backward difference operators and D0Vi is the centered difference operator at

the cell center xi, using a 3-point parabolic interpolation. On a regular grid this reduces to the MUSCL

limiter introduced in [13].

We define 1 as the ratio between the largest and smallest cells,
 0

 1

 2

 3

 4

 5

 6

 7

 0 
1 ¼ maxiDxi
miniDxi

; ð47Þ
and consider four classes of grid:

� A regular grid: Dxi ¼ 1
N.

� A mostly-regular grid with one small cell in the center.

� An irregular grid defined in blocks of 10, as used in ([7])
Dxi ¼ ci mod 10=ð5NÞ; ð48Þ

where
c ¼ ð2; 3; 5; 10; 1; 4; 2; 3; 10; 10Þ: ð49Þ

� A grid with one small cell near the left boundary at x = 0, with a reflecting boundary condition. This grid

is relevant to Cartesian mesh cut cell grids because typically the small cells appear near solid boundaries.

For the grids with one small cell, we have used 1 = 100. The globally irregular grid has 1 = 10.
A standard test problem characterized by very strong wave interactions is the Woodward–Colella blast-

wave problem introduced in [14]. The solution domain is x 2 [0, 1] with reflecting boundary conditions at

x = 0 and x = 1. The initial condition is q0 = 1, u0 = 0, and
p0ðxÞ ¼
1000 0 6 x 6 0:1;

0:001 0:1 6 x 6 0:9;

100 0:9 6 x 6 1:

8><>: ð50Þ
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

x

reference
regular

reference
irregular

Fig. 5. Woodward–Colella double blast wave; solution density at t = 0.038.
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We compute the solution, using minmod interpolation to t = 0.038 on two meshes: A regular mesh with

500 points, and an irregular mesh with 1000 points constructed according to (48) and (49). Both test meshes

have the same largest cell size Dx = 0.002 and the same time step. For the irregular mesh the time step is 9

times the stable time step for a flux formulation. For comparison, we show a 10,000 cell regular grid high

resolution solution. Fig. 5 shows the density of the computed solution on the regular and irregular grids as
compared with the reference solution.

Another example is of a strong double expansion wave, showing the robustness of this scheme. The ini-

tial condition is again a Riemann problem
ðqL; ul; plÞ ¼ ð1;�5; 0:4Þ; x 6 0:5; ð51Þ

ðqR; ur; prÞ ¼ ð1; 5; 0:4Þ; x > 0:5; ð52Þ

resulting in two strong expansion waves separated by a region of near vacuum. In Fig. 6 the density is

shown on both a linear and log scale. Many schemes have difficulty with density and pressure positivity

in such regimes (see [15]), but the kinetic scheme remains positive. The time step here is 9 times the stable

time step for the flux formulation.

4.1. Smooth solutions

In the next few examples, we consider smooth flows. We turn all the slope limiters off; the results confirm

that the solution converges with second order accuracy in smooth regions, on irregular grids.

4.1.1. Linear advection

The initial conditions are
ðq0ðxÞ; u0; p0Þ ¼ ð0:2 sinð2pxÞ þ 2; 3; 1Þ: ð53Þ
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x

Fig. 6. Double expansion wave, solution at t = 0.05.



Table 1

L1 Error in q for advection

N Regular Small Irregular

iei k(Dx) ieDxi k(Dx) ieDxi k(Dx)

50 8.66E-5 n/a 8.55E-5 n/a 8.02E-5 n/a

100 1.55E-5 2.49 1.54E-5 2.47 1.54E-5 2.38

200 3.49E-6 2.15 3.49E-6 2.14 3.63E-6 2.09

400 8.50E-7 2.04 8.50E-7 2.04 9.21E-7 1.98

800 2.12E-7 2.00 2.12E-7 2.00 2.18E-7 2.08
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corresponding to a density profile linearly transported at a speed u0. We impose periodic boundary condi-

tions and run the scheme until t = 1/3 so that the initial data has completed one period. Note that although

this example describes linear transport, the scheme itself is fully non-linear.

Results are summarized in Table 1. Here, eDx denotes the absolute error versus the exact solution, and

k(Dx) the L1 computed order of convergence:
Table

L1 Err

N

50

100

200

400

800
kðDxÞ ¼ log2
ke2Dxk1
keDxk1

� �
: ð54Þ
Convergence rates on all grids show second order behavior. In the case where there is one small cell
(1 = 100) the solution exhibits almost no change from the regular grid.

4.1.2. A rarefaction wave

As a non-linear test case, we consider the Riemann problem
ðqL; uL; pLÞ ¼ 1:40537; 1:01655; 1:61030ð Þ;
ðqR; uR; pRÞ ¼ 1; 1:43322; 1ð Þ:
producing a centered rarefaction wave whose left face propagates with velocity �1/4 and whose right face

propagates with velocity 1/4.

As initial condition for the test case, we take the exact solution for this Riemann problem at t = 1. We

integrate the solution to t = 1.237, and calculate errors over the smooth interval [0.4,0.6].

Convergence results are summarized in Table 2. On all grids, the solution converges with second order

accuracy in the L1 norm. For the small cell grid, the small cell is the location of the sonic point.

4.1.3. Weak wave reflection

In the next test case, we simulate an object embedded in the mesh, imposing reflecting boundary condi-

tions at x = 0. We consider a regular grid, as well as a grid with one small cell near the solid boundary.
2

or in q for rarefaction wave

Regular Small Irregular

iei k(Dx) ieDxi k(Dx) ieDxi k(Dx)

1.04e-5 n/a 1.04e-5 n/a 1.49e-5 n/a

2.63e-6 1.99 2.63e-6 1.98 4.16e-6 1.84

6.60e-7 1.99 6.60e-7 1.99 1.38e-6 1.59

1.67e-7 1.98 1.69e-7 1.98 3.76e-7 1.88

4.24e-8 1.98 4.26e-8 1.99 1.07e-7 1.81



Fig. 7. Weak wave reflection test case.

Table 3

L1 Error in q for rarefaction wave reflection

N Regular Small

iei k(Dx) ieDxi k(Dx)

50 7.46e-5 n/a 5.31e-5 n/a

100 1.71e-5 2.12 1.32e-5 2.00

200 4.12e-5 2.05 3.49e-6 1.92

400 9.95e-7 2.05 8.97e-7 1.97

800 2.36e-7 2.08 2.23e-7 2.00
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The initial condition in the tests is the solution of the Riemann problem from the previous case, Galilean

shifted so that the gas velocity on the left state is zero:
ðqL; uL; pLÞ ¼ 1:40537; 0; 1:61030ð Þ;
ðqR; uR; pRÞ ¼ 1; 0:41667; 1ð Þ:
The initial spread of the fan to be 1/6, and the origin of the Riemann problem is at
ffiffi
c
p �1=12

3
so the leftmost

edge of the wave starts at the reflecting boundary.

For these tests, the error is with respect to a reference solution computed on a highly refined regular grid,

with N = 3200. The solution is computed at t = 1/6 and errors are calculated over the smooth interval

[0,0.2]. A plot of the density of the initial condition and reference solution is in Fig. 7.

Convergence tests are summarized in Table 3. Both grids converge with second order accuracy; the grid

with one small cell near the boundary has slightly smaller error than the regular grid.

4.2. Discontinuous solutions

In the following tests, we turn the limiters back on and consider solutions containing shock waves.

4.2.1. A shock on an irregular grid

This test case is a leftward moving shock; the domain and grids are the same as in Section 4.1.2. The

initial data is



Table

L1 Err

N

50

100

200

400

800
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ðqL; uL; pLÞ ¼ 1; 0; 1ð Þ; x < 0:7;

ðqR; uR; pRÞ ¼ 2:18182;�1:08333; 3:16667ð Þ; x > 0:7:
corresponding to a left moving shock wave with speed s = �2. The solution is computed at t = 0.2; we com-

pare the post shock state on [0.4,0.6] with the exact answer.

Convergence results are plotted in Fig. 8. The solution behavior appears similar on all grids. The L1

error decreases as O(Dx), as expected for a solution with a discontinuity.

4.2.2. Shock reflection

The final test case is of a shock bouncing off a wall. We use the same shock data as in Section 4.2.1,
located at x = 0.2. After reflection, the state on the wall is
ðqL0 ; uL0 ; pL0 Þ ¼ 4:267378; 0; 8:406056ð Þ:

We solve to t = 0.3647, placing the reflected shock at x = 0.3, and compute the error over [0,0.2] to study

convergence near the boundary. Table 4 shows the results.

Fig. 9 shows the computed solution on a regular grid with N = 100 and a grid with one small cell near the

boundary. Solutions on both grids exhibit similar behaviour. The phenomenon of ‘‘wall heating’’, often
seen with finite volume schemes, can be observed near the left hand boundary. It is interesting to note that

the solution on the grid with one small cell near the boundary exhibits less heating (smaller undershoot)

than the solution on the regular grid.
4

or in q for shock reflection

Regular Small

iei k(Dx) ieDxi k(Dx)

7.09e-3 n/a 6.92e-3 n/a

3.42e-3 1.05 3.40e-3 1.03

1.79e-3 0.94 1.62e-3 1.07

9.17e-4 0.96 8.06e-4 1.01

4.72e-4 0.96 4.01e-4 1.01

Fig. 8. Shock wave convergence test.
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5. 2D Extension

In two space dimensions the Euler equations are:
q

qu1
qu2
E

0BBB@
1CCCA

t

þ

qu1
qu21 þ p

qu1u2
u1ðE þ pÞ

0BBB@
1CCCA

x1

þ

qu2
qu1u2
qu22 þ p

u2ðE þ pÞ

0BBB@
1CCCA

x2

¼ 0: ð55Þ
We denote by
U ¼ ðq; qu1; qu2;EÞT

F1 ¼ qu1; qu21 þ p; qu1u2; ðE þ pÞu1
� �T

F2 ¼ qu2; qu1u2; qu22 þ p; ðE þ pÞu2
� �T ð56Þ
the vectors of conserved variables and flux functions, respectively, with u2 ¼ u21 þ u22. In general boldface
denotes vector values in the spatial coordinates, i.e., x = (x1,x2), v = (v1,v2) and i = (i,j).

5.1. Kinetic construction

The construction of the 2D scheme follows closely the 1D construction; the pseudo-Maxwellian distri-

butions are constructed in two space dimensions, the distributions are evolved collisionlessly, and the fluid

variables are recovered by taking appropriate moments.

Particle distributions for a first order scheme in 2D were proposed in [9]. For second order accuracy, we
adopt the same strategy as in the 1D case, and seek modified distributions of the form
f2sðx; vÞ ¼
q
T
vðw1Þvðw2Þð1þ a1ðw2

1 � 1Þ þ a2ðw2
2 � 1Þ þ a3w1w2Þ; ð57Þ

g2sðx; vÞ ¼ qbvðw1Þvðw2Þð1þ b1w1 þ b2w2Þ: ð58Þ
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Here wk ¼ vk�ukðxÞffiffiffiffiffiffiffi
T ðxÞ
p . With the choices
a1 ¼
5

8
Dtðð3� cÞD1u1 þ ð1� cÞD2u2Þ; ð59Þ

a2 ¼
5

8
Dtðð1� cÞD1u1 þ ð3� cÞD2u2Þ; ð60Þ

a3 ¼
Dt
2
ðD2u1 þ D1u2Þ; ð61Þ

b1 ¼ Dt 1þ 4ðc� 1Þ
5ð2� cÞ

� �
D1

ffiffiffiffi
T
p
� 3ðc� 1Þ
10ð2� cÞ

ffiffiffiffi
T
p D1q

q
; ð62Þ

b2 ¼ Dt 1þ 4ðc� 1Þ
5ð2� cÞ

� �
D2

ffiffiffiffi
T
p
� 3ðc� 1Þ
10ð2� cÞ

ffiffiffiffi
T
p D2q

q
; ð63Þ
where
b ¼ 2� c
c� 1

� 2

5
ða1 þ a2Þ ð64Þ
an elementary calculation verifies that
eUðx;DtÞ ¼ Z Z
R2

1

v1
v2
v2=2

0BBB@
1CCCAf2sðx;Dt; vÞ þ

0

0

0

1

0BBB@
1CCCAg2sðx;Dt; vÞdv

¼
Z Z

R2

1

v1
v2
v2=2

0BBB@
1CCCAf2sðx� Dt v; vÞ þ

0

0

0

1

0BBB@
1CCCAg2sðx� Dt v; vÞdv ¼ Uðx;DtÞ þOðDt3Þ: ð65Þ
L1 stability and positivity of q and T carry through as in the 1D case provided the microscopic reconstruc-
tion is positive; see [9] and [16]. To that end, we limit the parameters a1, a2, a3, b1 and b2 as follows:
ja1j 6
1

6
; ja2j 6

1

6
; ja3j 6

1

9
; ð66Þ

jb1j 6 ð2
ffiffiffi
3
p
Þ�1; jb2j 6 ð2

ffiffiffi
3
p
Þ�1; ð67Þ
5.2. Interpolation

In each grid cell Ii we interpolate the primitive variables V = (q,u1,u2,r)
ViðxÞ ¼ ðqiðxÞ; u1iðxÞ; u2iðxÞ; riðxÞÞ
T

¼ ðqi; u1i; u2i; riÞ þ ðD1qi;D1u1i;D1u2i;D1riÞðx1 � x1;iÞ þ ðD2qi;D2u1i;D2u2i;D2riÞðx2 � x2;iÞ: ð68Þ
Away from the boundary, we apply non-oscillatory interpolation in each coordinate direction using the

limiter (46).
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For cells that are near the boundary, the centroids will not in general line up in coordinate directions.

For the slopes in a cell (i, j) we use one-sided differencing by fitting a linear function in x through the data

in that cell and that in cell (i ± 1, j ± 1), see Fig. 10. Each three point stencil is used to compute slopes nor-

mal and tangential to the boundary segment, and the normal and tangential slope with minimum absolute

value among these candidates is used.
The scheme allows considerable freedom in constructing the interpolation provided the requirements for

a positive reconstruction are met. For the test cases with smooth data where no limiting is required we fit a

function of the form qþ Dt̂ q̂t þ D2
t̂ q̂t

2 þ Dn̂qn̂, where ð̂t; n̂Þ are the normal and tangential coordinates of the

boundary cell. For better accuracy in the tangential direction, we use the four point stencil consisting of the

main cell, its two neighbors near the boundary, and a neighbor out in the normal direction.

Conservation adjustment ensures that the piecewise linear reconstruction (68) is conservative. In each

cell S ¼ Ii, we adjust (q, u1, u2, r) so that
Z Z
S

q̂dx ¼
Z Z

S

qðxÞdx;Z Z
S

q̂uk dx ¼
Z Z

S

qðxÞukðxÞdx;Z Z
S

Êdx ¼
Z Z

S

qðxÞ rðxÞ2

c� 1
þ 1

2
ðu1ðxÞ2 þ ðu2ðxÞ2Þ

 !
dx:

ð69Þ
These constraints can easily be satisfied using a procedure similar to that in Section 2.4; detailed formu-

lae are in [16]. The adjusted interpolant of r remains positive over the grid cell provided
jDkujj 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc� 1ÞT i

p
2Dx

ð70Þ
for k, j = 1, 2 and
jDkrj 6
ffiffiffiffiffi
T i

p

2
ffiffiffi
3
p

Dx
: ð71Þ
Fig. 10. Interpolation stencils near a boundary.
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In practice this limiter is nearly always redundant with the limitations inherent in the non-oscillatory

interpolation.

5.3. Evaluating 2D transport

In analogy with the 1D case, we set the time step as
Dt 6
Dxffiffiffi

2
p

maxifmaxkjuk;ij þ
ffiffiffiffiffiffiffi
3T i

p
g
: ð72Þ
where Dx is a parameter typically chosen to coincide with the regular grid mesh spacing. With the choice

(72) no particle in the initial distributions f2s(x;v) and g2s(x;v) will travel more than Dx over the time interval

Dt.
The transport of conserved quantities between two cells is given by
Z Z
S

Z Z
xþvDt2T

1

v1
v2
v2

2

0BBB@
1CCCAfiðx; vÞ þ

0

0

0

1

0BBB@
1CCCA giðx; vÞdvdx: ð73Þ
Taylor expansion as in Section 3.1 and Section 3.2 leads to evaluation of integrands of the form
Z Z
S

Z Z
xþvDt2Tw2½�

ffiffi
3
p

;
ffiffi
3
p
�2
xm1 x

n
2v

k
1v

l
2 dvdx; ð74Þ
for
m ¼ 0; n ¼ 0; k þ l 6 4;

m ¼ 1; n ¼ 0; k þ l 6 2;

m ¼ 0; n ¼ 1; k þ l 6 2;

8><>: ð75Þ
where S and T are polygons. We note that only the five moments m = 0, n = 0, k + l 6 2 need be accurate
to O(Dx2); the rest may be accurate only to O(Dx).

The domain of integration for (74) is in general a convex polytope in R4. A technique for evaluating inte-

grals over such domains can be found in [17]. Details on how to take advantage of the special structure of
Γ

A
B

R(A)

R(B)

Fig. 11. 2D particle reflection.
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the domain of integration to make this operation efficient, as well as discussion of how to implement (74) in

the general case can be found in [16].

5.4. 2D Boundary procedures

Reflecting boundary condition in 2D are implemented by creating reflected cells across the domain

boundary and initializing them from fluid data with reflected normal velocity (see Fig. 11).
6. 2D Numerical examples

6.1. Rectangular grid

The first example is of a 2D periodic oblique flow over the unit square x 2 [0, 1]2. We consider two grids:

(i) a regular grid; (ii) a rectangular grid with a small narrow strip of cells in each of the coordinate direc-

tions, crossing in the center of the domain. This grid contains one small cell and two strips of elongated

rectangular cells. The small cell size is (0.173)2 or (0.01)2 of the regular cell.

The initial condition is
Table

L1 err

Dx

2�4

2�5

2�6

2�7

2�8

2�9

2�10
ðq0ðxÞ; u1; u2; p0Þ ¼ ð0:3 sinð2px1Þ sinð2px2Þ þ 2; �2; 2; 1Þ; ð76Þ

with periodic boundary conditions; we run the scheme until the density profile has moved one period. The

numerical results are summarized in Table 5 where k is the order of convergence:
kðDxÞ ¼ log2
ke2Dxk
keDxk

� �
: ð77Þ
On both the regular and irregular grids the scheme converges with second order accuracy with virtually

no difference in absolute error.

6.2. Oblique channel shock tube

We consider one-dimensional flow in an oblique channel, and study convergence of solutions in the pres-
ence of a rigid boundary and cut cells as they appear in Cartesian mesh grids. Fig. 12 shows a schematic of

this embedded boundary mesh. To examine convergence near the boundary, we compute the L1 norm over

the cut cells and all of their neighbors. These are precisely the grid cells that interact directly with the

boundary over a single time step.
5

ors in q for 2D advection

ieregi k(reg) jje1�1¼0:01jj k(1�1 = 0.01) jje1�1¼0:173jj k(1�1 = 0.173)

5.42e-3 5.21e-3 5.11e-3

8.00e-4 2.76 7.91e-4 2.72 7.84e-4 2.70

1.20e-4 2.74 1.29e-4 2.62 1.28e-4 2.61

2.45e-5 2.29 2.46e-5 2.39 2.46e-5 2.38

5.45e-6 2.17 5.46e-6 2.18 5.45e-6 2.17

1.29e-6 2.08 1.29e-6 2.08 1.29e-6 2.08

3.16e-7 2.03 3.16e-7 2.03 3.16e-7 2.03



ω

Fig. 12. Schematic of angled channel test mesh, angle x.
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Initial conditions are given by the shock tube data along the channel
VL ¼ ðq; u1; u2; pÞL ¼ 1; 0; 0; 1ð Þ
VR ¼ ðq; u1; u2; pÞR ¼ 0:125; 0; 0; 0:1ð Þ:
The domain [0,1]2 is discretized by an underlying 100 · 100 mesh. The angle of the channel is x = p/6.
Density contours of the computed solution at t = 0.15 are shown in Fig. 13. Fig. 14 shows a slice of the
computed density along the middle of the channel and the upper boundary. The agreement between the

solution along boundary and the solution in the interior is excellent.
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Fig. 13. Channel shock tube: contour plot of q.
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Fig. 14. Channel shock tube: q upper boundary and interior slices.
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6.3. Shock wave

In this test, the initial data correspond to a planar shock wave moving with a speed of 2 along a x = p/5
channel.
Table

L1 err

Dx

2�6

2�7

2�8

2�9
ðq; u1; u2; pÞR ¼ 1; 0; 0; 1ð Þ
ðq; u1; u2; pÞL ¼ 24=11; 13 cosðxÞ=12; 13 sinðxÞ=12; 19=6ð Þ:
We compute the solution at t = 0.2 and examine L1 convergence in the whole domain and along the

embedded boundary. Table 6 summarizes the results for q; other components behave similarly. The scheme

exhibits the expected first order convergence on the grid as a whole as well as near to first order convergence

in the narrow strip of cells near the boundary; L1,o denotes the norm in the cells adjacent to the boundary

and their neighbors.

6.4. Advection

To examine convergence of the scheme on smooth solutions in the presence of the embedded boundary

we again study the advection of a density wave aligned with the channel. The problem is similar to the one

in [4]. The initial conditions are:
q0ðxÞ; u1; u2; p0ð Þ ¼ 2þ hðxÞ; cosðxÞ; sinðxÞ; 1ð Þ; ð78Þ

where
hðxÞ ¼ 10 exp � ð1:5� 5mÞð2:5� 5mÞð Þ�1
� �

; 0:3 < m < 0:5;

0; otherwise:

(
ð79Þ
6

ors for a shock in an oblique channel

iei1 k(L1) iei1,o k(L1,o)

6.26e-3 1.11e-3

3.08e-3 1.02 2.57e-4 1.11

1.57e-3 0.98 7.47e-5 0.78

7.83e-4 1.00 2.18e-5 0.77



Table 7

L1 and L1 errors of q for linear transport in channel

Dx iei1 k(L1) iei1,o k(L1,o) iei1 k(L1)

2�6 5.28e-3 8.62e-5 1.15e-2

2�7 1.10e-4 2.26 9.24e-6 2.22 3.23e-3 1.83

2�8 2.2e-5 2.32 9.26e-7 2.32 7.63e-4 2.08

2�9 4.55e-6 2.27 1.05e-7 2.14 2.05e-4 1.90
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where m is the coordinate aligned with the channel. For this calculation we turn all limiters off, and compute

the solution at t = 0.2, comparing with the exact solution. The solution converges with second order accu-

racy in L1 as well as L1 over the entire domain as well as in the boundary cells in all variables; see Table 7.

We note that the cell volumes in this problem span many orders of magnitude: on the coarsest grid the vol-

ume ratio of smallest to regular grid cells is 4.4 · 10�4 and on the finest grid it is 2.7 · 10�6.

These results compare very well with other methods [7,1,4].

6.5. Oblique shock reflection

Finally, we have computed the reflection of a shock on an x = p/6 ramp. Initial data is
ðqR; u1R; u2R; pRÞ ¼ 1; 0; 0; 1ð Þ; x > 0:1;

ðqL; u1L; u2L; pLÞ ¼ 3:7336083; 2:48629952; 0; 9:44305ð Þ; x < 0:1;
producing a shock wave moving to the right with Mach number M = 2.87. The ramp has reflecting bound-
ary conditions. Fig. 15 shows density contours on an underlying 200 · 200 Cartesian mesh at t = 0.22. Flow

features are cleanly resolved and do not appear to exhibit any oscillations or artifacts due to the embedded

boundary. The Mach stem is perpendicular to the ramp, and the slip surface is cleanly captured. On this

mesh, the smallest grid cell is 2.3 · 10�5 the size of a regular grid cell.
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Fig. 15. Mach 2.78 shock on 30� ramp: density contours.
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7. Conclusions

We have presented an implementation of a kinetic scheme for gas dynamics on arbitrary grids that does

not suffer from the small-cell problem typical of Cartesian meshes. It is unconditionally stable and practical

to implement for a time step constrained by regular mesh spacing. The scheme is L1 stable and positive in
density and internal energy. It converges with second order accuracy on irregular grids.
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